1.	Equal volumes of two solutions of pH= 2 and pH = 4 are mixed together. The pH of the resulting									
	solution will be									
	A) 2.0	B) 3.1	C) 4.2	D) 2.3						
2.	The molecule that has	maximum coval	ent character							
	A) NaH	B) Na ₂ S	C) CaCl ₂	D) SnCl ₄						
3.	A first order reaction i	is 20% complete i	n 600 s. The time requi	ired to complete 75% of the same						
	reaction will be									
	A) 3120 s	B) 3720 s	C) 4320 s	D) 4920 s						
4.	The mode of expressi	on in which the	concentration remains	independent of temperature is						
	A) molarity	B) normality	C) formality	D) molality						
5.	The vapour density of	gas A is four time	es that of B. If the mole	ecular mass of B is M then						
	molecular mass of A is	5								
	A) M	B) 4M	C) M/4	D) 2M						
6.	The enthalpy changes	for the following	reactions are							
	$C_{diamond} + O_{2(g)} \rightarrow C_{0}$									
	$C_{graphite} + O_{2(g)} \rightarrow CC$	$O_{2(g)}$ $\Delta H = -39$	93.4 kJ mol ⁻¹							
	The enthalpy change f	for the transition								
	$C_{diamond}$	C _{graphite} will be								
	A) -3.8 kJ mol ⁻¹ B)	+3.8 kJ mol ⁻¹	C) -1.9 kJ mol ⁻¹	D) +1.9 kJ mol ⁻¹						
7.	Among the isomers of	dimethylcylohex	anes, the chiral ones a	re						
	A) 1,2-trans and 1,3-ci	is	B) 1,2-cis and 1,3-trans							
	C) 1,3-trans and 1,4-tr	ans	D) 1,2-trans and 1,3-trans							
8.	The sequence of steps	s involved in aron	natic nucleophilic subst	itution involving a benzyne						
	intermediate is									
	A) addition-eliminatio	n	B) elimination-addition							
	C) addition-rearranger	ment	D) elimination-rearrangement							
9.	The relative basic stre	engths of NH ₃ , CH	₃ NH ₂ and NF ₃ are in th	e order						
	A) $CH_3NH_2 > NH_3 >$	NF ₃	B) $NH_3 > CH_3NH_2 > N$	NF ₃						
	C) $NF_3 > CH_3NH_2 >$	NH ₃	D) $CH_3NH_2 > NF_3 >$	NH ₃						

10.

_	+	HBr	 Product
_Br			

The 'product' in the above reaction is:

- C) CH₂ C Br
- D) This reaction cannot take

place

- 11. The outermost electronic configuration of the most electronegative element is
 - A) ns^2 , np^3
- B) $ns^2, np^6(n-1)d^5$
- C) ns²,np⁵
- D) ns²,np⁶

- 12. The commercial name of calcium hydride is
 - A) lime
- B) hydrolyth
- C) slaked lime
- D) calgon
- 13. The conductivity of a metal decreases with increase in temperature because
 - A) the kinetic energy of the electrons increases
 - B) the movement of electrons becomes haphazard
 - C) the ions start vibrating
 - D) the metal becomes hot and starts emiting radiation.
- 14. The number of moles of KMnO₄ that will be needed to react completely with one mole of ferrous oxalate $[Fe(C_2O_4)]$ in acidic solution is
 - A) 1
- B) 2/5
- C) 3/5
- D) 4/5
- 15. The lanthanide compound which is used as a most poweful liquid laser after dissolving in selenium oxychloride is
 - A) Cerium oxide

- B) Neodynium oxide
- C) Promethium sulphate
- D) Cerium sulphate
- 16. Protein and DNA being charged molecules, can be separated by
 - A) Electrophoresis

B) Centrifugation

C) Filtration

D) Spectrophotometry

- 17. The solubility of SrF₂ in water at 303 K is 9.55x10⁻⁵ mol.dm⁻³. The solubility product of the salt is
 - A) 8.7x 10⁻¹⁷
- B) 9.1x 10⁻¹¹
- C) 9.55x 10⁻⁵
- D) 3.48x 10⁻¹²
- 18. The biomolecule which does not have a secondary structure is
 - A) protein
- B) lipid

- D) RNA
- 19. The amount of electricity required to deposit 1.0 mole of aluminium from a solution of AlCl3 will be
 - A) 1 faraday
- B) 3 faradays
- C) 0.33 faraday
- D) 1.33 faraday

20.

The rate of o-nitration of the above compounds, (I)toluene, (II) 2-D-toluene and (III) 2,6-D₂tolueneare is in the following order

A) |> || > ||| B) || > | > ||

C) |I| > I > I|

- D) The rate is the same for all the three compounds
- 21. In the reaction, $2KCIO_3 \rightarrow 2KCI + 3O_2$

when 36.75 g of KClO₃ is heated, the volume of oxygen evolved at N.T.P. will be

- A) 9.74 dm³
- B) 8.92 dm³
- C) $10.08 \, \text{dm}^3$
- D) 22.4 dm³

- 22. In which of the following reaction is Kp > Kc
 - A) $H_2 + I_2 \longrightarrow$ 2HI B) $N_2 + 3H_2 \longrightarrow$
 - 2NH₃

- C) $2SO_3 \longrightarrow 2SO_2 + O_2$ D) $PCl_3 + Cl_2 \longrightarrow$
- 23. The pKa value in H₂O of picric acid, acetic acid and phenol are in the order
 - A) picric acid 0.4, acetic acid 4.75, phenol 10.0
 - B) acetic acid 0.4, picric acid 4.75, phenol 10.0
 - C) picric acid 0.4, phenol 4.75, acetic acid 10.0
 - D) phenol 0.4, acetic acid 4.75, picric acid 10.0

- The preferred sites of protonation in the following compounds are A) 1 and 3 B) 2 and 4 D) 2 and 3 C) 1 and 4 25. The correct IUPAC name of the following compound is Br A) 2-Bromo-5-methylbicyclo[5:4:0]heptane B) 3-Bromo-7-methylbicyclo[3.2.0]heptane C) 3-Bromo-6-methylbicyclo[3.2.0]heptane D) 2-Methyl-6-bromobicyclo[2.3.0]heptane 26. Which of the following vibrational modes show no IR absorption bands? A) Symmetric CO₂ stretch B) Antisymmetric CO₂ stretch C) Symmetric S=C=O stretch D) Antisymmetric S=C=O stretch 27. The first ionisation potential of Na, Mg, Al and Si are in the order A) Na < Mg > Al < SiB) Na > Mg > Al > SiC) Na < Mg < Al > Si D) Na > Mg > Al < Si28. The crimson colour imparted to flame is due to a salt of A) barium B) copper C) calcium D) strontium 29. The first four ionization energy values of a metal are 191,587,872 and 5962 kcal/mol. respectively. The number of valence electrons in the element is A) 1 B) 2 C) 3 D) 5 30. Which of the following weighs less when weighed in magnetic field? A) ScCl₃ B) FeCl₃ C) TiCl₃ D) VCI₃ 31. An aqueous solution of a salt 'X' gives white precipitate with dilute H₂SO₄. The same solution
- A) $Ba(NO_3)_2$ B) $Sr(NO_3)_2$ C) $Pb(NO_3)_2$ D) $Zn(NO_3)_2$
- 32. Essential vitamin required for the production of RBCs is

'X' is

A) Folic acid B) Nicotinic acid C) Pantothenic acid D) None of the above

with a few drops of aq. KI gives golden yellow precipitate which dissolves on heating. The salt

33.	The rate of the reaction $MnO_{4(aq.)}^{-} + 8 H^{+}_{(aq.)}^{-} + 5Fe^{2+}_{(aq.)}^{-} \longrightarrow Mn^{2+}_{(aq.)}^{+} + 5Fe^{3+}_{(aq.)}^{-} + 4H_{2}O$											
	can be best measured by monitoring colorimetrically the concentration of											
	A) MnO _{4 (aq.)}	B) Mn ²	(aq.) C) I	⁼ e ²⁺ (_{aq.)}	D) F	e ³⁺ (_{aq.)}						
34.	For the reaction	NH ₄ ⁺ + NO	O ₂ →	$N_2 + 2H_2C$	the foll	owing data w	as recorded					
	Set	NH_4^+/M	NO_2^-/M	Rate/MS ⁻¹								
	1	0.010	0.020	0.020								
	3	0.015 0.010	0.020 0.010	0.030 0.005								
	3	0.010	0.010	0.003								
	A) rate = K [NH	H ₄ ⁺] [NO ₂ ⁻]	В) г	rate = K [NH ₄ ⁺	$[NO_2]$							
	C) rate = K [NH	$I_4^+][NO_2^-]^2$	D) (rate = $K[NH_4]$	$[NO_2]^2$							
35.	Which of the foll	owing observ	ation indicat	es colligative pr	operties?							
	I. A 0.5 M NaBr s	olution has a	higher vapor	pressure than C	.5 M BaCl	2						
	II. A 0.5 M NaOH	solution free:	zes at a lowei	r temperature t	han pure v	water.						
	III. Pure water freezes at a higher temperature than pure ethanol.											
	A) only I	B) onl	y II C)	only III	D) I	and II						
36.	In a nitration exp	periment, 10.0	g of benzene	gave 13.2 g of	nitrobenz	ene. The per	centage					
	yield is											
	A) 83.5 %	B) 62.7	% C) 8	38.9%	D)	26.7%						
37.	A 500g toothpas	te sample has	0.4g fluoride	concentration.	The fluor	ide concentra	ition in terms					
	of ppm will be:											
	A) 200	B) 400	C) 5	500	D) 80	0						
38.	The rate constan	it of a reaction	n increases by	5% when the t	emperatu	re is increase	d from 27°C					
	to 28°C . Therefo	ore, the Ener	gy of activation	on of the reaction	n is							
	A) 36.6 kJ mol ⁻¹	B) 46.6	kJ mol ⁻¹	C) 16.6	kJ mol ⁻¹	D) 26.6 k	IJ mol ^{−1}					
39.	Among the follow	wing carbon c	entered react	tive intermediat	es, the ca	rbon that has	octet of					
	electrons is											
	A) carbocation	B) carb	anion	C) carbi	ne	D) radica	al					

40. Which one of the following compounds has R configuration?

- A) I C) III D) IV B) II
- 41. An electron releasing group will not stabilize which of the following groups?
 - A) Carbocation
- B) Carbanion
- C) free radical
- D) any of the above
- 42. The widest range over which electronic excitations in organic compounds occur, is
 - A) 200 nm 780 nm
- B) 220 nm-500nm
- C) 250 nm- 700 nm
- D) 290 nm 1000nm
- 43. The species in which the central atom uses sp² hybrid orbitals is
- B) NH₃
- C) CH₃⁺
- D) SbH₃

- 44. The chemical formula of 'laughing gas' is
 - A) NO
- B) N₂O
- C) N_2O_4
- D) N_2O_5
- 45. In which of the following ion/molecule, the ' \mathbf{S} ' atom does not assume sp³ hybridization?
 - A) SO_4^{2-}
- B) SF₄
- C) SF₂
- D) S₈

- 46. Phosphine is prepared by the reaction of
 - A) P and HNO₃.
- B) P and H₂SO₄ C) P and NaOH
- P and H₂S D)
- 47. Which of the following does not reduce Benedict's solution?
 - A) Glucose
- B) Fructose
- C) Sucrose
- D) Aldehyde

- 48. The genetic material of a cell is made of
 - A) nucleic acids
- B) proteins
- C) carbohydrates
- D) fats
- 49. Which of the following contain maximum number of electrons in the antibonding molecular orbitals
 - A) O_2^{2}
- B) O_2
- C) O_2^{-1}
- D) O_2^{\dagger}
- 50. If the radius of the first Bohr orbit is r, then the deBroglie wavelength in the third Bohr orbit is
 - A) 2πr
- B) 9r
- C) r/3

D) 6πr

51.	In the Vander waal equation of state for a non ideal gas the term that accounts for										
	intermolecular force is										
	A) (V- b)	B) RT	C) (<i>F</i>	$(rac{a}{v^2})$	D) 1/RT						
52.	The maximum amou	nt of CH ₃ Cl that ca	an be p	orepared from 20	Og of CH ₄ and 10g of Cl ₂ by the						
	following reaction, is										
	CH ₄ + Cl ₂	- CH ₃ Cl + HCl, (p	resum	e that no other i	reaction is taking place)						
	A) 3.625 mole	B) 0.141 mole	C)	1.41 mole	D) 0.365 mole						
53.	The most effective el	ectrolyte to cause	e the f	locculation of a r	negatively charged arsenium						
	sulphide colloid is:										
	A) NaCl	B) BaCl ₂	C) K	₃ Fe(CN) ₆	D) AICI ₃						
54.	The electronegativities	es of acetylene, e	thylen	e and ethane are	e in the order						
	A) ethylene > acetyle	ne > ethane	B) a	cetylene > ethyle	ene > ethane						
	C) ethane > acetylene	e > ethylene	C) acetylene > ethane > ethylene								
55.	The number of transi	tion states in a ur	nimole	cular nucleophil	ic substitution (S_N^1) reaction is						
	A) 0	B) 1	C) 2		D) 3						
56.	Which of the following	ng information is	not p	rovided by a rea	ction mechanism?						
	A) Which bonds are f	ormed and which	bond	s are broken							
	B) Which intermediates and transition states are formed										
	C) Energy content of the reacting species										
	D) Which is the slowe	est step									
57.	The R/S designation f	or the following s	stereoi	somer of 1,3-dib	promo-2-methylbutane is						
	CH ₂ Br										
	H;	3C—H									
		H——Br CH ₃									
		ა									

B) 2R, 3S C) 2S, 3R

A) 2R, 3R

D) 2S, 3S

- 58. The amino acid that cannot be obtained by hydrolysis of proteins is
 - A) HOOCCH₂CH(NH₃)COO

- + D) NH₃ (CH₂)₄CH(NH₂)COO
- 59. The quantum numbers for the 19th electron of Cr (Z=24) are
 - A) n = 3, l = 0, m = 0, $s = +\frac{1}{2}$
- B) n = 4, l = 0, m = 0, $s = +\frac{1}{2}$
- C) n = 3, l = 2, m = 2, $s = +\frac{1}{2}$
- D) n = 4, l = 2, m = 2, $s = +\frac{1}{2}$
- 60. Which of the following ion is colourless
 - A) Mn²⁺
- B) Cu⁺
- C) Cr³⁺
- D) Fe²⁺
- 61. The bond order for a species with the configuration

 $\sigma 1s^2 \ \sigma^* 1s^2 \ \sigma 2s^2 \ \sigma\ ^* 2s^2 \ \sigma\ p_x^1$ will be

- A) 1
- B) ½
- C) Zero
- D) 3/2
- 62. Which of the following compounds has the least tendency to form hydrogen bonds between molecules?
 - A) NH₃
- B) H₂NOH
- C) HF
- D) CH₃F
- 63. α -D(+) glucose and β -D(+) glucose are
 - A) Enantiomers
- B) Geometrical isomers
- C) Epimers
- D) Anomers
- 64. The enzyme which hydrolyses triglycerides to fatty acids and glycerol is
 - A) lipase
- B) maltase
- C) pepsin
- D) zymase

- 65. The most stable free radical which can be isolated is
 - A) Trityl radical

- B) Diphenyl methyl radical
- C) 2,4,6-Tri-ter-butylphenoxy radical
- D) tert-butyl radical
- 66. Pheromones are chemical substances which are
 - A) formed by fermentation process of fungi
- B) secreted by endocrine glands of man

C) secreted by insects

- D) plant growth hormones.
- 67. The inorganic precipitate which acts as a semipermeable membrane is
 - A) Calcium phosphate
- B) Nickel phosphate
- C) Plaster of paris
- D) Copper ferrocyanide
- 68. Lanthanide contraction is caused due to
 - A) the appreciable shielding on outer electrons by 4f electrons from the nuclear charge
 - B) the appreciable shielding on outer electrons by 5d electrons from the nuclear charge
 - C) the same effective nuclear charge from Ce to Lu.
 - D) the imperfect shielding on outer electrons by 4f electrons from the nuclear charge
- 69. Lattice energy for an ionic compound is calculated by using
 - A) Kirchoff's equation B) Markownikoff's rule
- C) Born Haber cycle D
 - D) Carnot cycle

- 70. The IUPAC name of $[Co(ONO)(NH_3)_5Cl_2]$ is
 - A) pentamminenitrocobalt(II)chloride B) pentamminenitrosocobalt(III)chloride
 - C) pentamminenitritocobalt(III)chloride D) pentammineoxo-nitrocobalt(III)chloride
- 71. The structure given below represents

- A) Isoprene Rubber
- B) Bakelite
- C) PVC
- O) Nylon 6,6
- 72. Which isomer of xylene can give three different monochloroderivatives?
 - A) o-xylene

B) m-xylene

C) p-xylene

D) xylene cannot give a monochloro derivative

73.	Carbocations, carbanions, free radicals and radical cation are reactive carbon intermediates.										
	Their hybrid orbitals	s respectively are									
	A) sp^2 , sp^2 , sp^3 , sp	B) sp^2 , sp^2 , sp ,	sp ³ C) sp ³	2 , sp 3 , sp 2 , sp	D)	sp ³ , sp ² , sp ,sp ²					
74.	A catalyst accelerate	es a reaction prima	rily by stabilizing t	:he							
	A) substrate	B) prod	luct C) int	ermediate	D] t	ransition state					
75.	The dipole moments	of halo compoun	ds are in the order	•							
	A) $CHCl_3 > CCl_4 > CHc$	Cl ₂ > cis-CHCl=CHC	B) cis	-CHCI=CHCI > (CHCl ₃ >	> CH2Cl2 > CCl4					
	C) cis-CHCl=CHCl > 0	$CH_2Cl_2 > CHCl_3 > CC$	Cl ₄ D) CH	$ C _3 > CHC _2 > c$	is-CHC	CI=CHCI > CCI ₄					
76.	Tollen's reagent is										
	A) Cu ₂ O	B) [Cu(OH) ₄] ²⁻	C) Ag	20	D)	$[Ag(NH_3)_2]^+$					
77.	The bond energy of .mol ⁻¹ . this is becaus		546 kJ .mol ⁻¹ , whil	e that of N-F b	ond in	NF ₃ is 280 kJ					
	A) N is more electro	onegative than B									
	B) The atomic mass	of N is higher tha	n that of B								
	C) The B-F bond ge	ts a partial double	bond character du	ue to p-p overla	ар						
	D) N has a lone pair	of electrons while	B does not nave								
78.	When equal volumes of the following solutions are mixed precipitation of										
	AgCl $(K_{sp} = 1.8 \times 10^{-3})$	¹⁰) will occur only	with								
	A) 10^{-4} M Ag ⁺ and 10	⁻⁴ M Cl	B) 10 ⁻⁵ M Ag ⁺ and	d 10 ⁻⁵ M Cl							
	C) 10 ⁻⁶ M Ag ⁺ and 10	⁻⁶ M Cl	D) 10 ⁻¹⁰ M Ag ⁺ an	d 10 ⁻¹⁰ M Cl							
79.	The oxidation of SO ₂	by O ₂ to SO ₃ is an	exothermic reacti	on. The yield o	of SO ₃	can be maximized					
	if										
	A) temperature is increased and pressure is kept constant										
	B) temperature is decreased and pressure is increased										
	C) both temperature and pressure are increased										
	D) both temperatur	re and pressure ar	e decreased								
80.	Which of the followi	ng has a positive e	ntropy change?								
	A) H ₂ O _(g)	$H_2O_{(I)}$	B) $BF_{3(g)} + NH_3(g)$) F ₃	3 B·NH	3 (s)					
	C) $2SO_{2(g)} + O_{2(g)} -$	→ 2SO _{3(g)}	D) 2 NH ₄ NO _{3(s)} -	→ 2N _{2(g)}	+ 4H ₂	$O_{(I)} + O_{2(g)}$					

		* * Actinide series				*lanthanide series
757	Ą	86	17.052	38.4	La	Line Ryes
360 UF	₹	¥	700	1/2/12	Ce	05 7.4.
224.74	Pa	9	DIA-PRODE	ина	P	\$
535.70	C	92		24.44	Z	8. n.
357	동	48	ma-men	Vă.	Pm	No. spring
244	2	¥	puban . T	14 A	Sm	R
200	¥	٤	THATCHE		Ē	220,11
747	S	99	O.Thir	15/35	6	Sept inte
747	묫	97	LINGS	14.21	4	25.7
347	\mathfrak{Q}	48	Cr. up to	162 50	Ş	99 Lr mates
हारा	Ë	99	d-sonu-	180.00	픙	67
347	F	É	LINE	78.78	Ψ	8 5
7,737	₹	101	L. Y. H	SKIEN	Ħ	-89 -n Fr
1287	ŏ	12	7,000	77.24	중	A State

100	Ţ	B7	H.C.	င္ပ	53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	공	37	SACIO	ᄌ	ě	22,3981	N	±	SH		ω	76	ı	-	701
T N	Ŗ a	20	10VOX	Ba	58	in a	Sr	μ	20.78	Ca	28	20.00	ĕ	12	THE STATE	Be	4	II. Keil			
	*	89-102		*	57-70																
1787	5	102	10.80	Ε	74	2858	4	30	100	Sc	2	11338									
100	굣	Ż	11.74	莱	z	31.224	Zr	В	17 357	∄	Ħ	3000									
17.7	밁	8	H.JE	Ta	7	Mary Mary	Z	4	20.000	<	ŭ	THEFT									
Š,	Ş	108	HOR	Ş	2	Weller.	≥	49	77.750	ဂ္	7	or or or									
200	뫄	107	.03.	Re	75	1 10	7	ħ	TA OUT	Z 5	25	TOTAL ST									
700	T S	108	200	S _O	35	20.00	و	B	C	ē	B	36									
		-	11000	₹	77	12,251	꼰	45	77.7	ဂ္ပ	2/	CREA									
7	C E	á	N.S.	Ŗ	76	27 an	Pd	5	2000	Z	Č.	nox									
ALDIA.	Uuu	111	JM S M.	À	74	1 K	Ą	47	12.00	ဂ္ဂ	2	20000									
227	Uub	125	218.55	Hg	8	15.41	င္ပ	B	16:30	Ŋ	Si Si	111									
			MUNIC	₫	5	14K	3	6	002.10	G	5	28.8	≥								
1887	Uuq	114	72/0	В	82	1.8.1	Sn	3	77.7	Ge	ĸ	38.36	S	£	ribon I	ဂ	đ	19:50			
			-						_			_	ס								
			MK	Po	4	127 W	Te	Ø	78.50	Se	¥	MIN	S	18	16.000	0	۵	Jalace			
			913	Ą	85	65 021	_	5	10.00	Β	끍	WAY.	Ω	17	15.139	IJ	49	B-10			
			(23	꾸	8	7	×	ĸ	22.23	즛	ĕ	V-KEI.	<u>></u>	*	71.75 W. 17.	z	6	11311	I	N	3

ROUGH PAGE

ROUGH PAGE

ROUGH PAGE